877 research outputs found

    Bone health in children and youth with Cystic Fibrosis: a systematic review and meta-analysis of matched cohort studies

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordObjective To assess the evidence regarding the differences in areal bone mineral density (aBMD) between children and adolescents with cystic fibrosis (CF) compared with their healthy peers, based on data from longitudinal studies. Study design We searched MEDLINE, SPORTDiscus, the Cochrane Library, PEDro (Physiotherapy Evidence Database), and Embase databases. Observational studies addressing the change of aBMD in children with CF and healthy children and adolescents were eligible. The DerSimonian and Laird method was used to compute pooled estimates of effect sizes (ES) and 95% CIs for the change of whole body (WB), lumbar spine (LS), and femoral neck (FN) aBMD. Results Six studies with participants with CF and 26 studies with healthy participants were included in the systematic review and meta-analysis. For the analysis in children with CF, the pooled ES for the change of WB aBMD was 0.29 (95% CI –0.15 to 0.74), for the change of LS aBMD was 0.13 (95% CI –0.16 to 0.41), and for the change of FN aBMD was 0.09 (95% CI –0.39 to 0.57). For the analysis in healthy children, the pooled ES for the change of WB aBMD was 0.37 (95% CI 0.26-0.49), for the change of LS aBMD was 0.13 (95% CI –0.16 to 0.41), and for the change of FN aBMD was 0.52 (95% CI 0.19-0.85). Conclusions aBMD development might not differ between children and adolescents with CF receiving medical care compared with their healthy peers. Further longitudinal studies in a CF population during growth and development are required to confirm our findings

    Prevalence and trends of thinness, overweight and obesity among children and adolescents aged 3-18 years across Europe: a protocol for a systematic review and meta-analysis

    Get PDF
    Introduction Increasing prevalence of both thinness and excess weight during childhood and adolescence is a significant public health issue because of short-term health consequences and long-term tracking of weight status. Monitoring weight status in Europe may serve to identify countries and regions where rates of these disorders are either slowing down or increasing to evaluate recent policies aimed at appropriate body weight, and to direct future interventions. This study protocol provides a standardised and transparent methodology to improve estimating trends of thinness, overweight and obesity in children aged 3-18 years and adolescents across the European region between 2000 and 2017. Methods and analysis This protocol is guided by the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) and the Cochrane Collaboration Handbook. To identify relevant studies, a search will be conducted in MEDLINE, EMBASE, Cochrane Library, CINAHL and Web of Science databases. From the selected studies, relevant references will be screened as supplemental sources. Finally, open search in websites from health institutions will be conducted to identify weight status data not published in scientific journals. Cross-sectional, follow-up studies and panel surveys reporting weight status (objectively measured height and weight) according to the International Obesity Task Force criteria, and written in English or Spanish will be included. Subgroup analyses will be carried out by gender, age, study year and country or European region. Discussion This study will provide a comprehensive description of weight status of children and adolescents across Europe from 2000 to 2017. The results will be disseminated in a peer-reviewed journal. This study will use data exclusively from published research or institutional literature, so institutional ethical approval is not required

    Glycosylated haemoglobin as a predictor of cardiovascular events and mortality: a protocol for a systematic review and meta-analysis

    Get PDF
    Introduction Glycosylated haemoglobin level (HbA1c) is an indicator of the average blood glucose concentrations over the preceding 2–3 months and is used as a convenient and well-known biomarker in clinical practice. Currently, epidemiological evidence suggests that HbA1c level is an independent risk factor for cardiovascular events such as myocardial infarction, stroke, coronary heart disease and heart failure. This protocol aim is to conduct a systematic review and meta-analysis to determine relationships of HbA1c levels with cardiovascular outcomes and cause of death, and to analyse the range of HbA1c levels that is a predictor of cardiovascular disease and/or mortality based on data from published observational studies. Methods and analysis The search will be conducted using Medline, EMBASE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Web of Science databases from their inception. Observational studies written in Portuguese, Spanish or English will be included. The Quality In Prognosis Studies tool will be used to assess the risk of bias for the studies included in the systematic review or meta-analysis. HRs for cardiovascular outcomes and causes of death with 95% CIs will be determined as primary outcomes. Subgroup analyses will be performed based on cardiovascular outcomes, cause of death studied, and type of population included in the studies. Ethics and dissemination This systematic review will synthesise evidence on the potential of using HbA1c level as a prognostic marker for cardiovascular disease outcomes and/or mortality. The results will be disseminated by publication in a peer-reviewed journal. Ethics approval will not be needed because the data used for this systematic review will be obtained from published studies and there will be no concerns about privacy

    Galilean quantum gravity with cosmological constant and the extended q-Heisenberg algebra

    Full text link
    We define a theory of Galilean gravity in 2+1 dimensions with cosmological constant as a Chern-Simons gauge theory of the doubly-extended Newton-Hooke group, extending our previous study of classical and quantum gravity in 2+1 dimensions in the Galilean limit. We exhibit an r-matrix which is compatible with our Chern-Simons action (in a sense to be defined) and show that the associated bi-algebra structure of the Newton-Hooke Lie algebra is that of the classical double of the extended Heisenberg algebra. We deduce that, in the quantisation of the theory according to the combinatorial quantisation programme, much of the quantum theory is determined by the quantum double of the extended q-deformed Heisenberg algebra.Comment: 22 page

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60∘60^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (sec⁡ξ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (sec⁡ξ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore